LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
B.Sc. DEGREE EXAMINATION - STATISTICS

SECOND SEMESTER - NOVEMBER 2015
ST 2502/ST 2500-STATISTICAL MATHEMATICS - I

Date : 28/09/2015
Dept. No. \square Max. : 100 Marks
Time : 09:00-12:00

SECTION A (10 x $2=20$ Marks)

Answer ALL questions

1. Show that $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}$ does not exist.
2. What is meant by discrete distribution?
3. Define convergence of a series.
4. A discrete random variable with probability function

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}
\frac{1}{x(x+1)}, & \mathrm{x}=1,2, \ldots \ldots \\
0, & \text { otherwise }
\end{array}\right.
$$

Show that mean does not exist.
5. Examine the applicability of Rolle's theorem to the function

$$
\mathrm{f}(\mathrm{x})=x^{2}(1-\mathrm{x}) \text { in the interval }[0,1]
$$

6. Find the raw moments μ_{1}^{\prime} and μ_{2}^{\prime} from the m.g.f of Geometric distribution

$$
\mathrm{M}_{\mathrm{X}}(\mathrm{t})=\frac{p}{1-q e^{t}}
$$

7. Show that the set of vectors $X_{1}=(1,0,0), X_{2}=(0,1,0), X_{3}=(0,0,1)$ is linearly independent.
8. A function f is defined on R by

$$
f(x)=\left\{\begin{array}{cc}
x, & \text { if } 0 \leq x<1 \\
1, & \text { if } x \geq 1
\end{array}\right.
$$

Find the right hand derivative at $\mathrm{x}=1$.
9. Find the inverse of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]$
10. Define a symmetric matrix with an example.

SECTION B (5 X $8=40$ Marks)

Answer any FIVE questions

11. Explain the different types of discontinuation of a function.

12 Prove that " Every function which has a finite derivative at a point is continuous at that point but not conversely.
13. Show that a monotonic increasing sequence which is bounded above is convergent.
14. Discuss the convergence of $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.
15. State and prove Rolle's Theorem.
16. Obtain the MGF of a discrete distribution with $\mathrm{pmf}, \mathrm{p}(\mathrm{x})=\mathrm{pq}^{\mathrm{x}}, \mathrm{x}=0,1,2, \ldots$

Hence find the mean.
17. Examine the linear independence of the vectors $(2,4,8),(3,9,27),(1,1,1)$
18. Find the rank of a matrix A by reducing it to the Normal form

$$
A=\left[\begin{array}{rrrr}
1 & -1 & 3 & 6 \\
1 & 3 & -3 & -4 \\
5 & 3 & 3 & 11
\end{array}\right]
$$

SECTION C [2 x $20=40$ Mark]

Answer any TWO questions
19 (a) Find the extreme points of the function $f(x)=2 x^{3}-15 x^{2}+36 x+1,-\infty<x<\infty$.
(b) Find the Maclaurin's series expansion of $f(x)=\sin a x$.

20 (a) Discuss the convergence of $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ for the various values of ' p '.
(b) Verify convergence or divergence of the following series and state the test you use:

$$
\begin{array}{ll}
\text { (i) } \sum_{n=1}^{\infty} \frac{(2 n-1)}{n(n+1)(n+2)} & \text { (ii) } \sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n} \tag{10+10}
\end{array}
$$

21 (a) Discuss the properties of cumulative distribution function.
(b) If the joint c.d.f of X and Y is $\mathrm{F}(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{cc}1-e^{-x}-e^{-y}+e^{-(x+y)}, & x>0, y>0 \\ 0, & \text { otherwise }\end{array}\right.$ Find the marginal p.d.f's of X and of Y . Are X and Y independent.
22 (a) Find the values of ' a ' so that rank $\rho(A)<3$, where A is the matrix

$$
\mathrm{A}=\left[\begin{array}{ccc}
3 a-8 & 3 & 3 \\
3 & 3 a-8 & 3 \\
3 & 3 & 3 a-8
\end{array}\right]
$$

b) Find the inverse of the matrix

$$
\begin{array}{r}
A=\left[\begin{array}{rrr}
2 & 1 & -1 \\
0 & 2 & 1 \\
5 & 2 & 2
\end{array}\right] \\
\end{array}
$$

